Akt and RhoA activation in response to high glucose require caveolin-1 phosphorylation in mesangial cells.
نویسندگان
چکیده
Glomerular matrix accumulation is a hallmark of diabetic renal disease. Serine/threonine kinase PKC-β1 mediates glucose-induced Akt S473 phosphorylation, RhoA activation, and transforming growth factor (TGF)-β1 upregulation and finally leads to matrix upregulation in mesangial cells (MCs). It has been reported that glucose-induced PKC-β1 activation is dependent on caveolin-1 and the presence of intact caveolae in MCs; however, whether activated PKC-β1 regulates caveolin-1 expression and phosphorylation are unknown. Here, we showed that, although the caveolin-1 protein level had no significant change, the PKC-β-specific inhibitor LY-333531 blocked caveolin-1 Y14 phosphorylation in high glucose (HG)-treated MCs and in the renal cortex of diabetic rats. The Src-specific inhibitor SU-6656 prevented the HG-induced association between PKC-β1 and caveolin-1 and PKC-β1 membrane translocation, whereas PKC-β1 small interfering RNA failed to block Src activation, indicating that Src kinase is upstream of PKC-β1 activation. Although LY-333531 blocked PKC-β1 membrane translocation, it had no effect on the PKC-β1/caveolin-1 association, suggesting that PKC-β1 activation requires the interaction of caveolin-1 and PKC-β1. PKC-β1-mediated Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation in response to HG were prevented by SU-6656 and nonphosphorylatable mutant caveolin-1 Y14A. In conclusion, Src activation by HG mediates the PKC-β1/caveolin-1 association and PKC-β1 activation, which assists in caveolin-1 Y14 phosphorylation by Src kinase. The downstream effects, including Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation, require caveolin-1 Y14 phosphorylation. Caveolin-1 is thus an important mediator of the profibrogenic process in diabetic renal disease.
منابع مشابه
TGF -induced RhoA activation and fibronectin production in mesangial cells require caveolae
Peng F, Zhang B, Wu D, Ingram AJ, Gao B, Krepinsky JC. TGF -induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol 295: F153–F164, 2008. First published April 23, 2008; doi:10.1152/ajprenal.00419.2007.—Glomerular sclerosis of diverse etiologies is characterized by mesangial matrix accumulation, with transforming growth factor(TGF ) an ...
متن کاملHigh glucose-induced RhoA activation requires caveolae and PKCβ1-mediated ROS generation.
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We previously showed that RhoA activation by high glucose in mesangial cells (MC) leads to matrix upregulation (Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC. Diabetes 57: 1683-1692, 2008). Here, we study the mechanism whereby RhoA is activated. In primary rat MC, RhoA activation required gluc...
متن کاملTGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae.
Glomerular sclerosis of diverse etiologies is characterized by mesangial matrix accumulation, with transforming growth factor-beta (TGFbeta) an important pathogenic factor. The GTPase RhoA mediates TGFbeta-induced matrix accumulation in some settings. Here we study the role of the membrane microdomain caveolae in TGFbeta-induced RhoA activation and fibronectin upregulation in mesangial cells (M...
متن کاملRhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction.
Increased intraglomerular pressure is an important hemodynamic determinant of glomerulosclerosis and can be modeled in vitro by exposing mesangial cells to cyclic mechanical strain. A previous study showed that RhoA mediates strain-induced production of fibronectin; herein is investigated the role of caveolae in RhoA activation. Cyclodextrin and filipin, agents that disrupt caveolae, abrogated ...
متن کاملA potential role for caveolin-1 in VEGF-induced fibronectin upregulation in mesangial cells: involvement of VEGFR2 and Src.
VEGF is known to be an endothelial cell mitogen that stimulates angiogenesis by promoting endothelial cell survival, proliferation, migration, and differentiation. Recent studies have suggested that VEGF may play a pivotal role in glomerular sclerosis through extracellular matrix protein (ECM) accumulation, although the signaling mechanism is still unclear. The GTPase RhoA has been implicated i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 306 11 شماره
صفحات -
تاریخ انتشار 2014